

STARTSEITE	NEUES	ÜBER	IMPRESSUM		
-					-
-					-
				-	

Telecommunication with Space Craft

Kurt Niel (University of Applied Sciences Upper Austria)

VOYAGER 1, 2 Start 1977; now end of solar system (139 AU¹⁾ – c 19:16:55 h)

Technical data (communication via Deep Space Network DSN)

- Launch mass
 835 733 kg (loosing weight / fuel consumption)
- Power supply Radioisotope thermoelectric generator (3 pcs.) 315 W
- Antenna 3.7 m High Gain paraboloid
- Transmission power 6.6 W 18 W

Transmission channel:

- Uplink S-Band (2.7 3.5 GHz) 16 b/s
- Downlink X-Band (8.4 8.5 GHz) 160 b/s normal / 1.4 kb/s high-rate

E.g. Plasma Wave Subsystem PWS

- Recording per week 48 s PWS-signal with 115.2 kb/s on Digital Tape Recorder DTR
- These data are received every 6 months via 70 m DSN
- E.g. Imaging Science Subsystem ISS (switched off 1990 to save power)
- resolution (BW-Camera with filter wheel) per channel
 895 x 848 Pixel = 758 960 Byte → transmission 1:15 h per channel

VOYAGER 1, 2 Start 1977; now end of solar system $(139 \text{ AU}^1) - \text{c} 19:16:55 \text{ h})$

E.g. Imaging Science Subsystem ISS (switched off 1990 to save power)

resolution (BW-Camera with filter wheel) per channel 895 x 848 Pixel = 758 960 Byte → transmission 1:15 h per channel

¹⁾ AU - astronomical unit = 149.6 Mio km (Distance Sun - Earth)

BASICS (SOME) TELECOMMUNICATION

- Free space loss
- Antenna gain
- Signal to noise ratio
- Bit error vs. Signal to noise ratio
- Receivers noise

1) Received power
(isotropic)
$$P_{ri} = S. A_{W} = \frac{P_{ti}}{4\pi r^{2}} \cdot \frac{\lambda^{2}}{4\pi}$$

$$P_{ri} ... Received power isotropic [W]$$

$$S ... Radiation power density [W/m^{2}]$$

$$A_{w} ... Effective antenna area$$

$$P_{ti} ... Transmitted power isotropic [W]$$

$$r ... Distance sender > receiver [m]$$

$$\lambda ... Wavelength [m]$$

$$F_{i} = \frac{P_{ti}}{P_{ri}} = \left(\frac{4\pi r.f}{c}\right)^{2}$$

$$F_{i} ... Free space loss [1]$$

$$P_{ti} ... Transmitted power isotropic [W]$$

$$P_{ri} ... Received power isotropic [W]$$

$$r ... Distance sender > receiver [m]$$

$$r ... Distance sender > receiver [m]$$

$$F_{i} ... Free use (loss [1])$$

$$P_{ri} ... Received power isotropic [W]$$

$$F_{i} ... Free use (loss [1])$$

$$P_{ri} ... Received power isotropic [W]$$

$$F_{i} ... Free use (loss [1])$$

$$P_{ri} ... Received power isotropic [W]$$

$$F_{i} ... Free use (loss [1])$$

$$P_{ri} ... Received power isotropic [W]$$

$$F_{i} ... Free use (loss [1])$$

$$P_{ri} ... Received power isotropic [W]$$

$$F_{i} ... Eree use (loss [1])$$

$$P_{ri} ... Received power isotropic [W]$$

$$F_{i} ... Eree use (loss [1])$$

$$P_{ri} ... Received power isotropic [W]$$

$$F_{i} ... Eree use (loss [1])$$

$$P_{ri} ... Received power isotropic [W]$$

$$F_{i} ... Eree use (loss [1])$$

$$P_{ri} ... Received power isotropic [W]$$

$$F_{i} ... Eree use (loss [1])$$

$$P_{ri} ... Received power isotropic [W]$$

$$F_{i} ... Eree use (loss [1])$$

$$P_{ri} ... Received power isotropic [W]$$

$$F_{i} ... Eree use (loss [1])$$

$$F_{i,dB} = 10 \log(F_i)$$

$$F_{i,dB} = 20 \log(r) + 20 \log(f) - 147,55$$

Connection	Frequency	Distance	Free space loss isotropic
TV-Satellite	S-Band – 3 GHz	36 000 km	193 dB
Rosetta	S-Band – 3 GHz	1,4 AU = 214 Mio km	269 dB
Voyager	S-Band – 3 GHz	48,6 AU = 7 290 Mio km	296 dB
Voyager	X-Band – 8 GHz	48,6 AU = 7 290 Mio km	308 dB
Voyager	S-Band – 3 GHz	133,0 AU = 20 000 Mio km	308 dB

3) *Friis*-Transmission-equation

4) Antenna gain paraboloid

$$G = \frac{4\pi}{\lambda^2} \cdot A \cdot \eta_{eff}$$
$$G = \left(\pi \frac{d}{\lambda}\right)^2 \cdot \eta_{eff}$$

 $\begin{array}{l} \mathsf{P}_t & .. \mbox{ Transmission power [W]} \\ \mathsf{P}_r & .. \mbox{ Receiving power [W]} \\ \mathsf{G}_t & .. \mbox{ Antenna gain sender} \\ \mathsf{G}_r & .. \mbox{ Antenna gain receiver} \\ \mathsf{r} & .. \mbox{ Distance sender > receiver [m]} \\ \lambda & .. \mbox{ Wavelength [m]} \end{array}$

G Antenna gain [1] [dB]
λ Wavelength [m]
A Antenna area [m ²]
d Antenna aperture [m]
η_{eff} Effectiveness 0,80,99 [1]

G [dBi] .. Gain against isotropic antenna

5) Received power

 $P_{r,dBm} = P_{t,dBm} + G_{t,dB} + G_{r,dB} - F_{i,dB}$

6) Received power gap over power density of the receivers noise N₀

$$P_{r,dBm}/N_0 = P_{r,dBm} - N_0$$

... Measure of "usability" of the receiver signal

7) Transmission rate (Shannon-Hartley)

$$C = B.\log_2\left(1 + \frac{S}{N}\right)$$

- C .. Ideal transmission rate [bps]
- B .. Bandwidth [Hz]
- S .. Signal power [W] od. $[\sqrt{V}]$
- N .. Noise power [W] od. $[\sqrt{V}]$
- S/N .. Signal to noise ration [1] [dB]

8) Bit error rate = measure for the quality of the transmission of one channel (number of errors per time unit) - measurement

decreases.

Table 5-2. Voyager 2 uplink carrier design control table.

	Voy 2 (JSX), 70m/18 k X-Band TWT LP, HGA/N	W/12 Hz, 0 dE ILC, 160 bps (Rng, 0 dE Coded, 2-W	3 Cmd, Clr \ /ay Radio L	Wthr osses	
CARRIER DESIGN	Spacecraft 2			Station 43	}	
(Decence" Decument	Time in Mission 96/001/00/00		Time from	m Epoch 35	5065 00:00	
("Descanso -Document)		Design	Fav Tol	Adv Tol	Mean	Variance
• Earth \rightarrow Spacecraft	Transmitter Parameters					2
	1) RF Power, dBm	72.55	0.50	-0.50	72.6	0.04
Z.I GHZ	Power Output = 18.0 kW					
	Transmit Circuit Loss, dB	0.00	0.00	0.00	0.0	0.00
Aperture 70 m	2) Antenna Gain, dBi	62.10	0.30	-0.70	61.9	0.08
	Elev Angle = 58.01 deg		0000000000			
	3) Pointing Loss, dB	-0.03	-0.03	-0.03		
	Path Parameters					
	Space Loss, dB	-296.18			-296.2	0.00
	Freq = 2113.31 MHz					
	Range = 7.273+09 km					
	= 48.62 AU					
	5) Atmospheric Attenuation, dB	-0.04	0.00	0.00	0.0	0.00
	Receiver Parameters	121/2128	V124834241	2021270		
	6) Polarization Loss, dB	-0.12	0.12	-0.18		
Aperture 3.7 m	7) Antenna Gain, dBi	34.60	0.39	-0.39	34.5	0.03
	8) Pointing Error, dB	-0.10	0.10	-0.10	-0.1	0.00
	Limit Cycle, deg	0.05	-0.05	0.00		
	Angular Errors, deg	0.00	0.00	0.00	0.0	0.00
Passiver poise	9) Rec Circuit Loss, dB	0.00	0.00	0.00	0.0	0.00
I Ceceiver Hoise	10) Noise Spec Dens, dBm/Hz	1545.00	-0.10	50.00	-100.7	0.00
	Hot Body Noise K	0.00	0.00	0.00		
Necessary gap for hit error safety	11) Carr Thr Noise, RW dB-Hz	12.72	-0.24	0.00	12.7	0.01
Necessary gap for bit effor safety	Power Summary	10.10	0.21	0.25	12.7	0.01
	12) Revel Power P. dBm				-1274	0.16
	(1+2+3+4+5+6+7+8+0)				1-1.7	0.10
	13) Revd P/N_{e} dB-Hz (12–10)				39.2	0.16
	14) Ranging Suppression dB	0.00	0.00	0.00	0.0	0.00
	15) Command Suppression, dB	0.00	0.00	0.00	0.0	0.00
	16) Carr Pwr/Tot Pwr, dB (14-15)				0.0	0.00
	17) Revd Carr Pwr, dBm (12+16)				-127.4	0.16
Remaining gap for bit error safety	18) Carr SNR in 2BLO, dB (17-10-11)				26.5	0.17
Kurt.Niel@fh-wels.at - August 2017					2.05	= 0.80

	Voy 2 (JSX), 70m/18 kW X-Band TWT LP, HGA/NL	V/12 Hz, 0 dl .C, 160 bps	3 Rng, 0 dE Coded, 2-W	3 Cmd, Clr V /ay Radio Lo	Vthr osses	
	Spacecraft 2			Station 43		
JARRIER DESIGN	Time in Mission 96/001/00/00	Time from Epoch 35065 00:00				
"Descanso"-Document)		Design	Fav Tol	Adv Tol	Mean	Variance
	Transmitter Parameters	-				
\rightarrow Spacecrail \rightarrow Earlin	1) RF Power to Antenna, dBm				40.9	0.04
8 / CH ₇ 12.3 W	Transmitter Power, dBm	40.90	0.50	-0.50	40.9	0.04
	Transmit Circuit Loss, dB	0.00	0.00	0.00	0.0	0.00
	2) Antenna Circuit Loss, dB	0.00	0.30	0.00	0.0	0.00
Aperture 3.7 m	3) Antenna Gain, dBi	48.20	0.26	-0.26	48.2	0.01
	Pointing Error, dB	-0.10	0.10	-0.10	-0.1	0.00
	Limit Cycle, deg	0.05	-0.05	0.00		
	Angular Errors, deg	0.00	0.00	0.00		
	Path Parameters				0+04040708	and the second
	5) Space Loss, dB	-308.19			-308.2	0.00
	Freq = 8415.00 MHz					
	Range = 7.273+09 km					
	= 48.62 AU					
	Atmospheric Attenuation, dB	-0.04	0.00	0.00	0.0	0.00
	Receiver Parameters					
	7) Polarization Loss, dB	-0.08	0.08	-0.11		
Aperture 70 m	8) Antenna Gain, dBi	74.01	0.60	-0.60	73.7	0.14
	9) Pointing Loss, dB	-0.20	0.20	-0.20	125 636	
Receiver noise	10) Noise Spec Dens, dBm/Hz	-185.35	-0.97	0.80	-185.4	0.09
	Total System Noise Temp, K	21.12	-4.24	4.24		
	Receiver Temperature, K	13.20	-3.00	3.00		
	Ground Contribution, K	2.88	-3.00	3.00		
	Galactic Contribution, K	2.68	0.00	0.00		
	Atmospheric Contrib, K	2.36	0.00	0.00		
	Hot Body Noise, K	0.00	0.00	0.00		
	Elev Angle = 58.01 deg		0000000	1/1201052	10.000	12112123
Necessary gap for bit error safety	11) Carr Thr Noise, BW, dB-Hz	14.77	-0.46	0.41	14.8	0.03
	Power Summary					12/12/20
	12) Revd Power, P _p dBm				-145.5	0.19
	(1+2+3+4+0+0+7+8+9)					
	15) Revd $P_f N_0$, dB-Hz (12–10)		0.00	0.05	39.9	0.28
	14) Ranging Suppression, dB	-0.22	0.05	0.05	-0.2	0.00
	15) Telemetry Suppression, dB	-6.02	0.16	-0.17	-6.0	0.00
	10) Carr Pwr/ lot Pwr, dB (14+15)				-6.2	0.00
Pompining gon for hit orror cofety	1/) Kevd Carr Pwr, dBm (12+16)				-151.7	0.20
Kurt.Nierenaning gaptor of enor salety	18) Carr SNR in 2BLO, dB (17–10–11)				19.0	0.31

Table 5-3. Voyager 2 downlink carrier design control table.

2.0S = 1.10

LONG TERM FORECAST 1995 until 2020

- Downlink
- Signal get weaker due to increasing distance
- Transmission rate decreasing du to necessary transmission safety

TWTA

Travelling Wave Tube Amplifier Power amplifier for transmitter S-/X-Band

VOYAGER VIDICON (1977) Explorering Jupiter, Saturn, Uranus, Neptune and Interstellar space.

JUPITER

14th February 1990 – back view to earth

Radio telescope image of Voyager

Voyager 2 Sun Sensor Bias and X-band 1/2-Beam width at Earth for 2010

Voyager adjusts the position of its X-band beam to follow the Earth as it orbits about the Sun

SPACECRAFT CURRENTLY TRACKED AT GOLDSTONE

Stereo A & B

Mars Odyssey

MOM

SOHO

MAVEN

Mars Exploration Rover

Chandra

LRO

Wind

Kepler

Planet C

Mars Express

ACE

Themis C

Geotail

Kurt.Niel@fh-wels.at - August 2017

GOES

SCaN Current Network

The current NASA space communications architecture embraces three operational networks that collectively provide communications services to supported missions using space-based and ground-based assets

ROSETTA Start 2005; end September 2016 (going down to 67P)

Technical data (communication via Deep Space Network DSN + ESA/Perth)

- Launch mass
 1 670 kg + propellant 1 500 kg
- Power supply Solar array (2 x 32 m²) 850 W (3.4 AU) / 395 W (5.25 AU)
 Antennas 2.2 m High Gain paraboloid + 0.8 m Medium Gain paraboloid + 2 omnidirectional Low Gain
 Transmission power 28 W RF X-Band TWTA + 2 x 5 W RF S/X-Band

Transmission channel Rosetta:

- Uplink S-Band (2.7 3.5 GHz) 5-20 kb/s
- Downlink X-Band (8.4 8.5 GHz) 22 kb/s

PHILAE Undocking from Rosetta and landing at 67P: 12.11.2014 then stuck on rocks

Technical data (transmitting relay Rosetta within max. 100 km distance):

- Launch mass 100 kg
- Power supply Solar array 2.2 m² (32 W) filling 140 Wh battery +

970 Wh non-rechargeable battery

- Antenna patch 1 dBi
- Transmission power 1 W RF S-Band transmitter

Lunar Laser Communication Demo

- Lunar Laser Communications Demo (LLCD) to fly on Lunar Atmosphere and Dust Environment Explorer (LADEE)
- Launch Readiness Date: August 2013 from Wallops Flight Facility, VA on Minotaur V
 - One month transfer
 - One month commissioning
 - 250 km orbit
 - LLCD operation demonstrating 600 Mbps downlink
 - Spacecraft and science payloads checkout
 - Three months science
 - 50 km orbit
 - Three science payloads
 - Neutral Mass Spectrometer
 - UV Spectrometer
 - Lunar Dust Experiment

Laser Communications Relay Demo (LCRD)

- LCRD will fly in 2017 and demonstrate optical communication for possible inclusion in NASA's Next Generation Tracking and Data Relay Satellite (TDRS).
- LCRD will be a network node with two optical terminals based on the LLCD design.
- Data transfer will be at variable data rates up to 2.8 Gbps.
- Onboard processing will implement DTN protocols to help address atmospheric conditions.

SOUND PROBES FROM SPACE

1) Sputnik 1 (Oct. 1957) – Orbit 238 – 947 km; 20/40 MHz CW http://www.dd1us.de/sounds/DL3PD%20Alois%20-%2001%20-%20Sputnik%201%20first%20satellite%20reduced.mp3

2) Sputnik 2 (Nov. 1957) – Orbit 320 – 1770 km; heart beat dog Laika http://www.dd1us.de/sounds/02%20traguardo%20l'infinito%20heart%20of%20Laika%20in%20Sputnik%202%20in%20the%204th%20orbit.mp3

3) Vostok 1 (Apr. 1961) – voice Jurij Gagarin http://www.dd1us.de/sounds/DL3PD%20Alois%20-%2006%20-%20Juri%20Gagarin%20first%20man%20in%20Space%20reduced.mp3

4) Mercury Atlas 6 (Feb. 1962) – voice John Glenn http://www.dd1us.de/sounds/Mercury-6_Zero-G.mp3

5) Apollo 13 (Apr. 1970) – way to moon http://www.dd1us.de/sounds/apollo-13%20houston%20we%20have%20had%20a%20problem.mp3

6) Voyager (Jul. 1979) – Plasma Wave Subsystem near Jupiter https://www.youtube.com/watch?v=5j5IObIReqk

7) EME ham radio (1995) – OE2AXH via 6.4 m paraboloid http://www.dd1us.de/sounds/EME_5GHZ6_OH2AUE_7_ssb.mp3

8) Rosetta (2014?) – magnetic field oscillations of 67P/Churyumov/Gerasimenko http://www.dd1us.de/sounds/manuel_senfft_-_a_singing_comet.mp3

Ham radio on the International Space Station http://www.ariss.org UK ham radio educational satellite http://warehouse.funcube.org.uk

SOURCES

- NASA Voyager Mission Status
- https://jpl.nasa.gov/voyager/mission/status/
- NASA Deep Space Network DSN
- http://eyes.nasa.gov/dsn/dsn.html
- Goldstone (CA, USA), Madrid (E), Canberra (AUS)

NASA Space Communication and Navigation

- http://www.spacecomm.nasa.gov

Twitter @NSFVoyager2

"Descanso"-Document: Descanso4--Voyager_new.pdf → JPL "Voyager Telecommunications", R. Ludwig, J. Taylor, March 2002

ARISS Amateur Radio on the International Space Station

- http://www.ariss.org

FUNCube UK Amateur Radio Education Satellite

- http://warehouse.funcube.org.uk

Sounds from Space by Maththias Bopp/DD1US

- http://www.dd1us.de Kurt.Niel@th-wels.at - August 2017